2025
npj Digital Medicine
Deriving novel atrial fibrillation phenotypes using a tree-based artificial
intelligence-enhanced
electrocardiography approach
Mehak Gurnani, Konstantinos Patlatzoglou, Joseph Barker, Libor
Pastika, Boroumand Zeidaabadi, Ibrahim Antoun, Riyaz Somani, ... Arunashis Sau, Fu Siong Ng
Read Paper
2025
npj Digital Medicine
The cost of explainability in artificial intelligence-enhanced electrocardiogram models
Konstantinos Patlatzoglou, Libor Pastika, Joseph Barker, Ewa
Sieliwonczyk, Gul Rukh Khattak, Boroumand Zeidaabadi, Antônio H Ribeiro, ... Arunashis Sau, Fu
Siong Ng
Read Paper
2025
Heart Rhythm
Image based artificial intelligence-enhanced ECG prediction of incident atrial fibrillation
Boroumand Zeidaabadi, Konstantinos Patlatzoglou, Joseph Barker, Libor
Pastika, Gul Rukh Khattak, Mehak Gurnani, Xavier Da Silva Anjos Machado et al.
Read Paper
2025
Heart Rhythm
Prediction of incident atrial fibrillation: A comprehensive evaluation of conventional and
artificial intelligence-enhanced approaches
Arunashis Sau, Ewa Sieliwonczyk, Joseph Barker,
Boroumand Zeidaabadi, Libor Pastika, Konstantinos Patlatzoglou, Gul Rukh Khattak et al.
Read Paper
2025
JAMA Cardiology
Artificial Intelligence–Enhanced Electrocardiography for Complete Heart Block Risk
Stratification
Arunashis Sau, Henry Zhang, Joseph Barker,
Libor Pastika, Konstantinos Patlatzoglou et al.
Read Paper
2025
European Heart Journal
Artificial intelligence-enhanced electrocardiography to predict regurgitant valvular heart
diseases: an international study
Yixiu Liang , Arunashis Sau , Boroumand Zeidaabadi , Joseph
Barker , Konstantinos Patlatzoglou , Libor Pastika , Ewa Sieliwonczyk , Zachary
Whinnett , Nicholas S Peters et al.
Read Paper
2025
Journal of the American Heart Association
Revisiting Abnormalities of Ventricular Depolarization: Redefining Phenotypes and Associated
Outcomes Using Tree‐Based Dimensionality Reduction
Mehak Gurnani, Konstantinos Patlatzoglou, Joseph Barker, Derek
Bivona, Libor Pastika et al.
Read Paper
2025
Heart Rhythm O2
Granger causality connectivity analysis of persistent atrial fibrillation dynamics reveals
posterior wall mechanistic insights
Joseph Barker, Arunashis Sau, Nikesh Bajaj, Alex Jenkins et al.
Read Paper
2024
The Lancet Digital Health
Artificial intelligence-enhanced electrocardiography for the identification of a sex-related
cardiovascular risk continuum
Sau, A, Sieliwonczyk, E, Patlatzoglou, K, Pastika, L, McGurk, A,
Ribeiro, A.H. et al.
Read
Paper
2024
JAMA Cardiology
Artificial Intelligence–Enhanced Electrocardiography for Prediction of Incident Hypertension
Sau, A, Barker, J, Pastika, L et al.
Read Paper
2024
The Lancet Digital Health
Artificial intelligence-enabled electrocardiogram for mortality and cardiovascular risk
estimation: a model development and validation study
Arunashis Sau, Libor Pastika, Ewa Sieliwonczyk, Konstantinos
Patlatzoglou, Antônio H Ribeiro et al.
Read Paper
2024
European Heart Journal - Digital Health
A comparison of artificial intelligence-enhanced electrocardiography approaches for prediction
of time-to-mortality using electrocardiogram images
Arunashis Sau, Boroumand Zeidaabadi, Konstantinos Patlatzoglou, Libor
Pastika, et al.
Read
Paper
2024
JACC: Case Reports
Smartwatch Locates Myocardial Lesion in Stable Angina
Boroumand Zeidaabadi, Joseph Barker, Libor Pastika, Nickolaos
Pantazopoulos, Raffi Kaprielian, Fu Siong Ng.
Read
Paper
2024
npj Digital Medicine
Artificial intelligence-enhanced electrocardiography derived body mass index as a predictor of
future cardiometabolic disease
Pastika, L., Sau, A., Patlatzoglou, K. et al.
Read
Paper
2023
BMJ Medicine
The emerging role of artificial intelligence enabled electrocardiograms in healthcare
Sau A, Ng FS.
Read Paper
2023
European Heart Journal Digital Health
Machine learning-derived cycle length variability metrics predict spontaneously terminating
ventricular tachycardia in implantable cardioverter defibrillator recipients
Sau A, Ahmed A, Chen JY, Pastika L, Wright I, Li X, et al.
Read
Paper
2023
Cardiovascular Digital Health Journal
Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant
tachycardia from atrioventricular nodal re-entrant tachycardia
Sau A, Ibrahim S, Kramer DB, Waks JW, et al.
Read
Paper
2022
European Heart Journal Digital Health
Artificial intelligence-enabled electrocardiogram to distinguish cavotricuspid isthmus
dependence from other atrial tachycardia mechanisms
Sau A, Ibrahim S, Ahmed A, Handa B, et al.
Read Paper
2022
Cardiovascular Digital Health Journal
Is machine learning the future for atrial fibrillation screening?
Sivanandarajah P, Wu H, Bajaj N, Khan S, Ng FS.
Read Paper
2022
Nature Scientific Reports
A fully-automated paper ECG digitisation algorithm using deep learning
Wu H, Patel KHK, Li X, Zhang B, et al.
Read Paper